## OpsTech Session 4 Runway Condition Assessment— Moving Toward an Automated Environment

Moderator: Rob Kikillus, Airport Operations Manager, Seattle-Tacoma International Airport

#### **Speakers:**

Daniel Cohen-Nir, Senior Director—Safety, Airport Programs and Environmental Affairs, Airbus Americas, Inc.

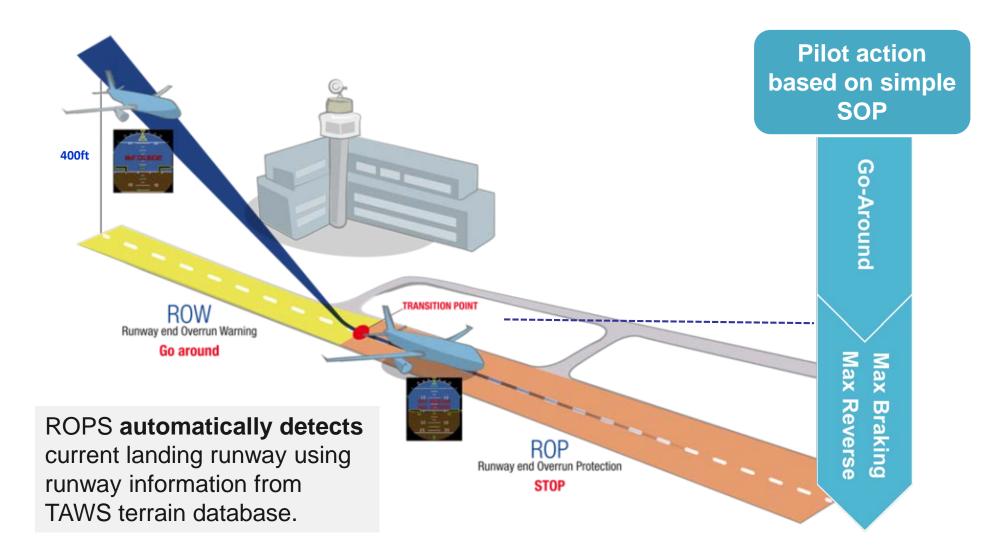
Steve McKeown, CEO, Team Eagle LTD.



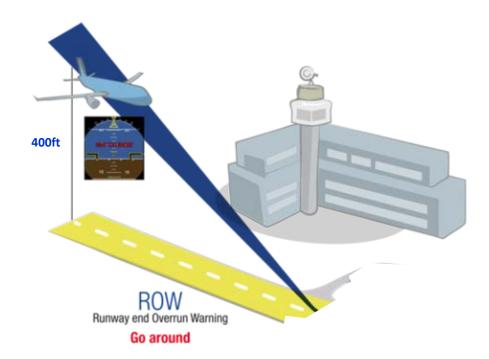
#### TAMPA 2019

AIRPORTS COUNCIL INTERNATIONAL - NORTH AMERICA ANNUAL CONFERENCE AND EXHIBITION SEPTEMBER 15 – 17, 2019

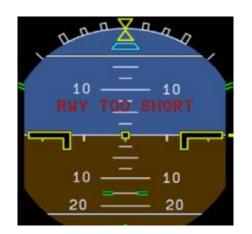





2019 ACI-NA Annual Conference and Exhibition


Dan Cohen-Nir Senior Director, Airbus Americas





#### **ROPS Combines Air and Ground Alerting**



#### **ROW:** Runway End Overrun Warning, during Air Phase







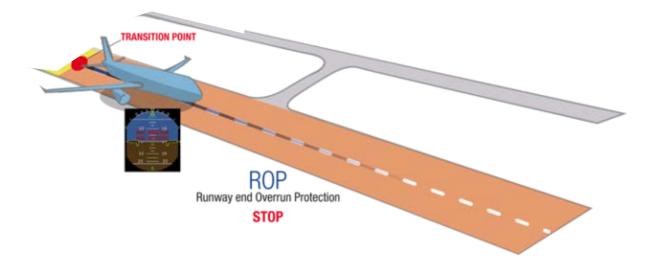
**During the Air-Phase, ROPS** performs a **real time in-flight landing distance assessment** for dry & wet runways with respect to detected landing distance available.

 $\rightarrow$  If the estimated landing distance is longer than the runway length, ROPS triggers an alert to encourage the crew to go around

()))) "RUNWAY TOO SHORT"

#### **ROP: Runway Overrun Protection, during Ground Phase**




During the Ground-Phase, ROPS performs a real time on-ground stopping distance assessment with respect to detected landing distance available

 $\rightarrow$  If the remaining runway length is assessed too short, ROP triggers an alert to encourage the crew to apply AND keep all available deceleration means

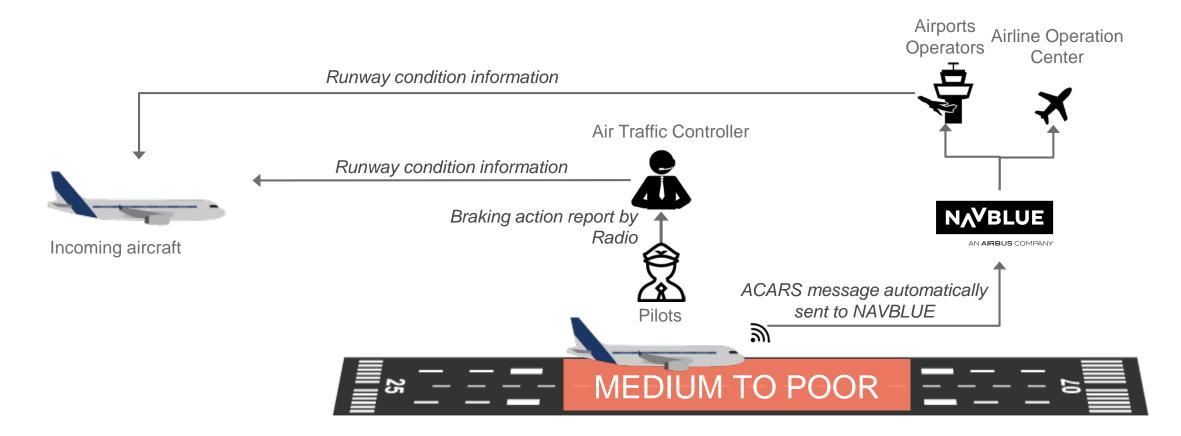


SET MAX REVERSE

**EEP MAX REVERSE** 



### **NAVBLUE** AN AIRBUS COMPANY


RunwaySense by NAVBLUE





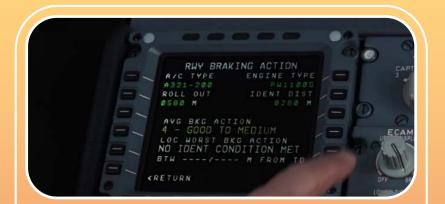
#### What is Runway Sense?

Use the aircraft to measure how slippery the runway was at landing and report this information back to airspace users



## Pilot reports of braking action

Pilot Reports of Braking Action form a key component of the ICAO Global Reporting Format


But they can be subjective based on pilot experience and technique

No formal training on how to give a good PIREP



|    | Assessment Criteria                                                                                                                                                                                                                                                                                      |      |                     | Downgrade Assessment Criteria |                                                                                                                                                 |                                        |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|
| 1. | Runway Condition Description                                                                                                                                                                                                                                                                             | Code | Mu (µ) <sup>1</sup> |                               | Vehicle Deceleration or<br>Directional Control<br>Observation                                                                                   | Pilot<br>Reported<br>Braking<br>Action |  |  |
|    | • Dry                                                                                                                                                                                                                                                                                                    | 6    |                     |                               |                                                                                                                                                 |                                        |  |  |
|    | <ul> <li>Frost</li> <li>Wet (Includes Damp and 1/8 inch depth or less of water)</li> <li>1/8 inch (3mm) depth or less of:</li> <li>Slush</li> <li>Dry Snow</li> <li>Wet Snow</li> </ul>                                                                                                                  | 5    |                     | 40 or Higher                  | Braking deceleration is<br>normal for the wheel<br>braking effort applied AND<br>directional control is<br>normal.                              | Good                                   |  |  |
|    | <ul> <li>5° F (-15°C) and Colder outside air temperature:</li> <li>Compacted Snow</li> </ul>                                                                                                                                                                                                             | 4    | 39                  |                               | Braking deceleration OR<br>directional control is<br>between Good and<br>Medium.                                                                | Good<br>to<br>Medium                   |  |  |
|    | <ul> <li>Slippery When Wet (wet runway)</li> <li>Dry Snow or Wet Snow (Any depth) over Compacted Snow</li> <li>Greater than 1/8 inch (3mm) depth of:</li> <li>Dry Snow</li> <li>Wet Snow</li> <li>Wet Snow</li> <li>Warmer than 5° F (-15°C) outside air temperature:</li> <li>Compacted Snow</li> </ul> | 3    | to 30               | Π                             | Braking deceleration is<br>noticeably reduced for the<br>wheel braking effort applied<br>OR directional control is<br>noticeably reduced.       | Medium                                 |  |  |
|    | Greater than 1/8 (3mm) inch depth of:<br>• Water<br>• Slush                                                                                                                                                                                                                                              | 2    |                     | 29 t                          | Braking deceleration OR<br>directional control is<br>between Medium and Poor.                                                                   | Medium<br>to<br>Poor                   |  |  |
|    | • Ice <sup>2</sup>                                                                                                                                                                                                                                                                                       | 1    |                     | to 21                         | Braking deceleration is<br>significantly reduced for the<br>wheel braking effort applied<br>OR directional control is<br>significantly reduced. | Poor                                   |  |  |
|    | <ul> <li>Wet Ice <sup>2</sup></li> <li>Slush over Ice</li> <li>Water over Compacted Snow <sup>2</sup></li> <li>Dry Snow or Wet Snow over Ice <sup>2</sup></li> </ul>                                                                                                                                     | 0    | 20 or Lower         |                               | Braking deceleration is<br>minimal to non-existent for<br>the wheel braking effort<br>applied OR directional<br>control is uncertain.           | Nil                                    |  |  |

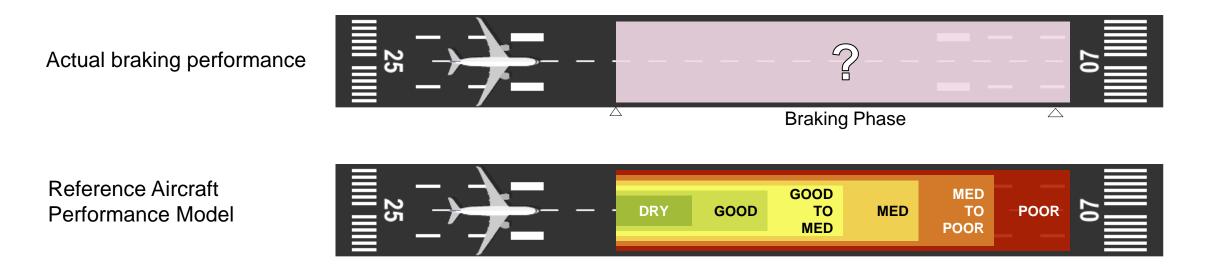
## RunwaySense BY NAVBLUE



**ATSU Software Application** 

Braking Action Computation Function (BACF)




#### RunwaySense Collaborative Web Platform



AN AIRBUS COMPANY

#### How Braking Action Computation Function (BACF) works

Use the data measured by the aircraft during its deceleration roll to identify the braking action level



In simple terms, BACF compares what the aircraft actually did to simulations of what the aircraft would have done for each reference runway state  $\rightarrow$  find the best match



#### **Pilot Feedback on MCDU**

#### FEEDBACK TO THE PILOT

- Situational awareness about how slippery the runway was and where
- (REQ) lets pilot know that information is available

#### **AID FOR PIREP**

 Can be used to consolidate the pilots' evaluation of the runway braking action for the PIREP





## RunwaySense BY NAVBLUE



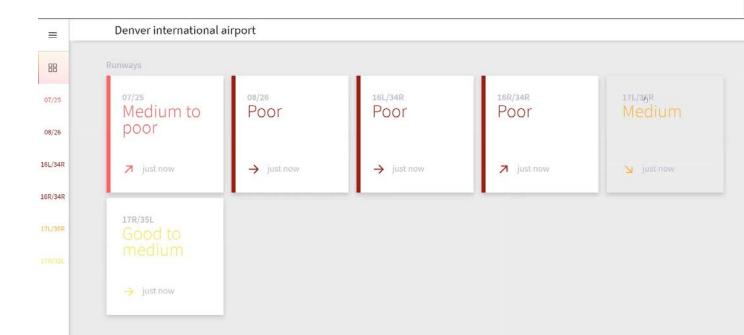
RunwaySense Collaborative Web Platform



## Web-based collaborative platform built by NAVBLUE

ACARS MESSAGES ARE ROUTED TO NAVBLUE.

PARSE AND ENRICH THE DATA


CUSTOMIZED DASHBOARDS WITH REAL-TIME INFORMATION

**OVERVIEW OF ALL RUNWAYS** 

TRENDING & DETAILED VIEW OF BRAKING ACTION REPORTS ON THE RUNWAY







#### What's the Benefit? Why Share the Data?



#### FOR AIRLINES

- Pilot awareness of slippery conditions. Objective feedback for help with Pilot Braking Action Report.
  - Awareness of slippery conditions, risk management within route network.

#### FOR AIRPORTS

- Real-time information about trend of runway condition.
- Optimize runway closures and cleaning based on slippery conditions.
- Optimize use of de-icing chemicals for slippery areas of runway.



#### FOR AIR TRAFFIC CONTROLLERS

- Awareness of current runway braking action.
- Collaboration with airport on slippery conditions and runway closures



AN **AIRBUS** COMPANY

#### Why is it Free for Airlines?

The Safety Benefit of this technology can only be realized with a mass adoption of the onboard software

The value is not in one message, it is from the combination of 100s of messages.

Therefore Airbus & NAVBLUE decided to make the onboard software FOC, provided that airlines share the data with the RunwaySense platform.



| ×           | X             | × | X             |
|-------------|---------------|---|---------------|
| ×           |               | X | ×             |
| ¥<br>≫      |               |   | <b>★</b><br>★ |
| ×<br>w<br>× | <b>×</b> ×    | × | <b>★</b>      |
| X           | <b>X</b><br>w | × | X             |

Participate as an Early Adopter

- Access to the RunwaySense platform and data for a trial period
- Comparison of RunwaySense data with current operations, runway cleanings, weather and friction measurements
- Workshops with NAVBLUE to understand how the data can best be used at your airport
- Participate and help shape the development of RunwaySense to best suit your operational needs



AN **AIRBUS** COMPANY

## Interested to participate in the future of Runway Safety?

Contact NAVBLUE for more information on how to get RunwaySense

rops.support@navblue.aero





#### Maintenance

Flight Hour Services (FHS)



#### Upgrades

AIRBUS Interiors Services

#### Consulting

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### Flight Operations



#### Training

AIRBUS A350

### Services byAirbus

Added Value Services

Aircraft availability Optimised costs Increased revenue potential Powered by skywise. AIRBUS A single platform for all aviation data sources



#### Airport Compatibility: Useful links and handles

- Website: airbus.com
- Technical Data: airbus.com/aircraft/support-services/airport-operations-and-technicaldata.html
- Aircraft Characteristics Manuals: <u>airbus.com/aircraft/support-services/airport-operations-and-</u> <u>technical-data/aircraft-characteristics.html</u>
- Airport Front Desk: airport.compatibility@airbus.com

# For more information





## **pioneering** progress

1000

17

-

7

BELUGAAIRBUS

17







## **Emerging Technologies**

## Possible Implementations

## Summary

ICAO ADOP Montreal July 18/19

## **Emerging Technologies**

#### <u>Genesis</u>

SW1248 12/05 MDW - overrun Aviation Community Responses: TALPA ARC, FAA, Transport Canada – CRDAs/BCIP ICAO FTF 1-9-1-1-Goal – a better/safer 'global' RCR reporting format

#### **Emerging Technologies - Genesis**

FAA, NTSB, EASA, Transport Canada recommendations:

Explore RT in-aircraft, in situ WBC data solutions

Explore RT in-ground-vehicle, in-situ WBC data solutions

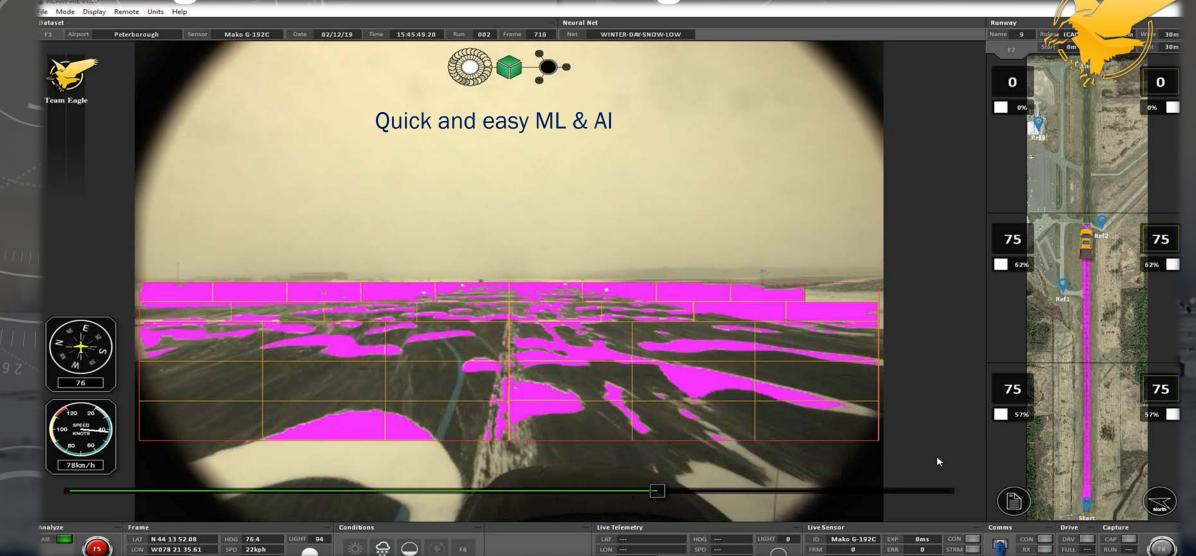
 Maintain and hopefully improve objectively measured 'slipperiness' of runways

5/5/2016 : https://www.ntsb.gov/about/employment/\_layouts/ntsb.recsearch/Recommendation.aspx?Rec=A-11-028 5.5.4 b) https://www.easa.europa.eu/sites/default/files/dfu/Report%20Volume%201%20-%20Summary%20of%20findings%20and%20recommendations.pdf https://www.brightonnow.ca/?p=664

#### **Emerging Technologies - Genesis**



### All, as *Decision Supporting Tools (DSTs)* for basic:


### Contaminant Coverage, Type, Depth, Aircraft WBC

1. Smart Cameras - objective measurement of contaminant coverage, type, and depth In-aircraft objective deceleration measurement 2. In-aircraft early braking failure warning systems 3. 4. Ex-Aircraft, global 24/7/365 monitoring of braking and steering failures 5. In-ground-vehicle, objective, maximum aircraft anti skid braking availability measurement Integration of DSTs with in-RCR-vehicle, or cloud 6. based NOTAM management systems

Smart Cameras - objective measurement of % contaminant coverage

1. Using day/night visibility cameras, simple and straightforward machine learning and resulting AI, to provide measured % coverage across entire <u>and special sections of the runway</u>

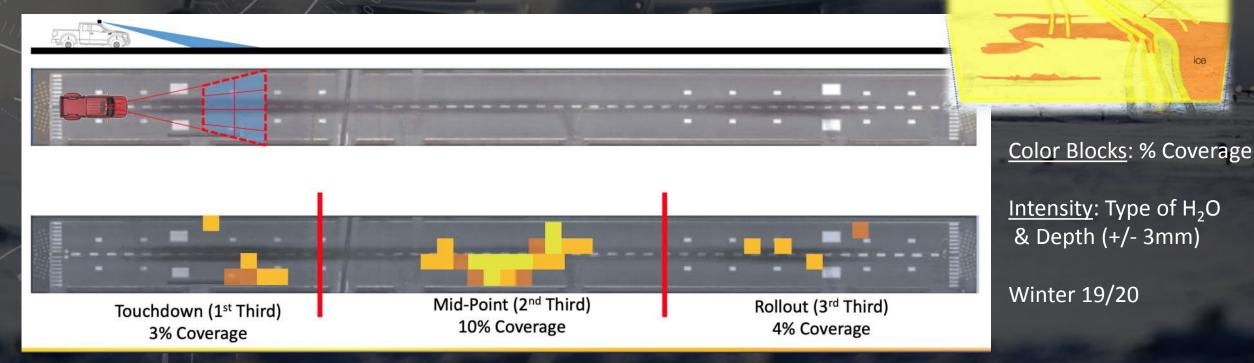
## Emerging Technologies - Decision Supporting Tools Measuring contaminant % coverage:



## Emerging Technologies - Decision Supporting Tools Measuring contaminant % coverage – Al information:

|                      | 1                                    | -   -   -        |          | $-7.1 \pm 0.75$ for |                |                     |                  |                        |                        |
|----------------------|--------------------------------------|------------------|----------|---------------------|----------------|---------------------|------------------|------------------------|------------------------|
| RCAM-AIE v19.4.20.50 |                                      |                  |          |                     |                |                     |                  | _                      | þ                      |
| e Display Remote     | Units Help                           |                  |          |                     |                |                     |                  |                        |                        |
| itaset               |                                      |                  |          |                     | Runway         |                     |                  |                        |                        |
| 1 Airport P          | eterborough Ser                      | nsor Mako G-192C | Date 02  | 2/12/19 Time        | 17: Name 9     | Rules ICAO          | Full 2121m       | Wide 30m               | 1                      |
|                      |                                      |                  |          |                     |                | Start Om            | End <b>2121m</b> | ROI <b>30 m</b>        | 1                      |
|                      |                                      |                  |          |                     |                | A REAL PROPERTY AND |                  | and the second second  | A BASS                 |
| Report.tx            | t - Notepad                          |                  |          |                     | - 0            | ×                   |                  | >                      |                        |
| File Edit F          | ormat View Help                      |                  |          |                     |                |                     | 教育               | Ame                    | 50                     |
| Team   RCAM Analy    | ysis Report                          |                  |          |                     |                | ~ 24                |                  | ALL CALL               |                        |
|                      |                                      |                  |          |                     |                |                     |                  | 379                    | %                      |
|                      | Airport: Peterbor<br>Date: 2019/07/  |                  |          |                     |                | - 1 B               |                  | SALES ILL.             | IL LOCAL               |
|                      | Time: 11:31:26                       |                  |          |                     |                | Dan Br              |                  | No.                    |                        |
|                      | Runway: 9                            | 0641             |          |                     |                |                     |                  | 2710                   | 25                     |
| Full                 | Length: 2122m (6<br>1 Width: 30m (98 |                  |          |                     |                | - 418               |                  |                        |                        |
|                      | Frames: 457                          | ,                |          |                     |                |                     |                  | 249                    | %                      |
| D                    | uration: 00:00:59                    | .26              |          |                     |                | 4                   |                  | ar an an               |                        |
| Name                 | Cleared                              | First %          | Second % | Third %             | Average %      | -                   |                  | A STATE                |                        |
|                      |                                      |                  |          |                     | Average %      |                     | <u>教堂</u>        |                        | 25                     |
| Full Widt            |                                      | 10.9%            | 24.7%    | 57.1%               | 24.2%          |                     |                  |                        |                        |
| User<br>80           | 30m (98')<br>25m (82')               | 10.9%<br>13.0%   | 24.7%    | 37.1%<br>44.5%      | 24.2%<br>29.0% | 6 8                 |                  | 105                    | ~                      |
| 60                   | 19m (62')                            | 16.5%            | 37.6%    | 50 AV               | 37.5%          |                     |                  | ALL IN                 |                        |
|                      |                                      |                  |          |                     |                |                     |                  |                        | The second             |
| 100                  |                                      |                  |          |                     |                |                     |                  | A 192                  | NAMES OF A DESCRIPTION |
|                      |                                      |                  |          |                     |                |                     |                  | Children of the        | Card a                 |
| <                    |                                      |                  |          |                     |                |                     |                  |                        | -                      |
|                      |                                      |                  |          |                     |                |                     |                  |                        | 57)                    |
|                      |                                      |                  |          |                     |                |                     | Start            |                        | North                  |
| alyze                | Frame                                |                  |          | Conditions          |                | Con                 |                  | Capture                | 10000748000            |
|                      | LAT N44.2283100                      | HDG 163.6        | LIGHT 93 |                     |                |                     | CON              | САР                    | 6                      |
| (F5)                 | LON W78.3757650                      |                  |          |                     | $\bigcirc$     | F6                  | RX               | RUN                    | FB                     |
|                      | MSL 196m                             | SAT 10V/9        | т        | **                  |                |                     | тх               |                        |                        |
|                      | in 1 •                               |                  |          |                     |                | ~ 🖸                 | 🔁 🗓 🕼            |                        |                        |
|                      |                                      | 0                |          |                     |                |                     |                  | <sup>5(0)</sup> 7/15/2 | 2019 ~                 |

Use to:


#### Auto populate TALPA/GRF FICON fields

Safely <u>downgrade</u> RWYCCs

Commercialized Winter2018/19

Smart Cameras - objective measurement of contaminant type and depth

# 2. Using SWIR, ML and AI to measure H<sub>2</sub>O contaminants (eventually all contaminants and why)



Smart Cameras – safe low visibility RCR Team navigation

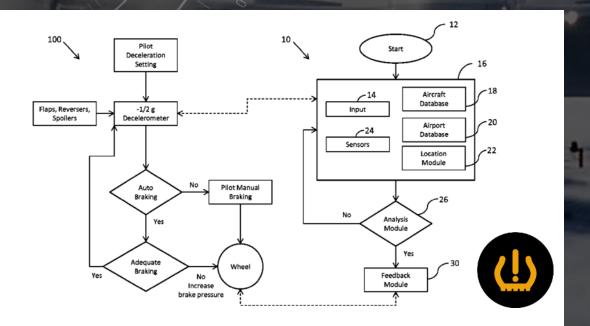
3. Using 'gated aperture' and/or flash LiDAR tech to enhance safer RCR vehicle navigation in low visibility conditions

*'Looking through' obscuration:* 

- snow,
- fog,heavy rains.

For: smart cameras RCR Team safety

Smart Cameras – coincident RCR automatic autonomous FOD detection


4. Using smart camera 'type and depth' technology, ML and Al to auto-alert RCR Ops Teams to 'possible FOD' detection & location

In-aircraft deceleration - objective measurement

Interrogating FDR data for aircraft WBC experienced during landings.

Two variants:
i) by aircraft manufacturer (i.e. AIRBUS/NAVBLUE)
ii) aircraft manufacturer agnostic (i.e. AST/Zodiac Aerospace)

https://www.navblue.aero https://www.aviationsafetytechnologies.com Emerging Technologies - Decision Supporting Tools In-aircraft (cockpit glass) earliest 'low deceleration' warning systems. Both a post landing GRF DST and a real time warning to our pilots that their aircraft autobraking deceleration targets are not being met (braking failures).





#### AUTOBRAKING NOT ACHIEVED

### Global 24/7/365 monitoring of landings

Using real time aircraft landing data, determine braking and steering slipperiness as well as current runway conditions

Globally, all airports

24/7/365 monitoring of all landings, contaminant affects, and surfaces

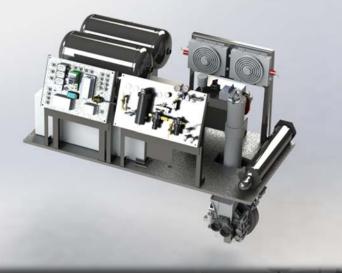

OFF

ON

(wind velocity, precipitation or sandstorm 'ON' triggered by real-time micro-weather reporting, i.e. Climacell, IBM Watson, SUREWX, etc.)



**Emerging Technologies - Decision Supporting Tools** ADEW – Aircraft Deceleration Early Warning Global 24/7/365 monitoring of landings Current binary yes/no identification of braking or directional control (steering) failures Real time alerting and confirmations of unsafe runway conditions > ML and AI to alert to trending of deteriorating conditions (i.e. loss of texture, rubber, 'slippery when wet', +KPIs, +)




In-ground-vehicle max Mu<sub>acwbc</sub> objective measurement

An aircraft anti-skid braking system and landing gear mounted into a RCR ground vehicle.

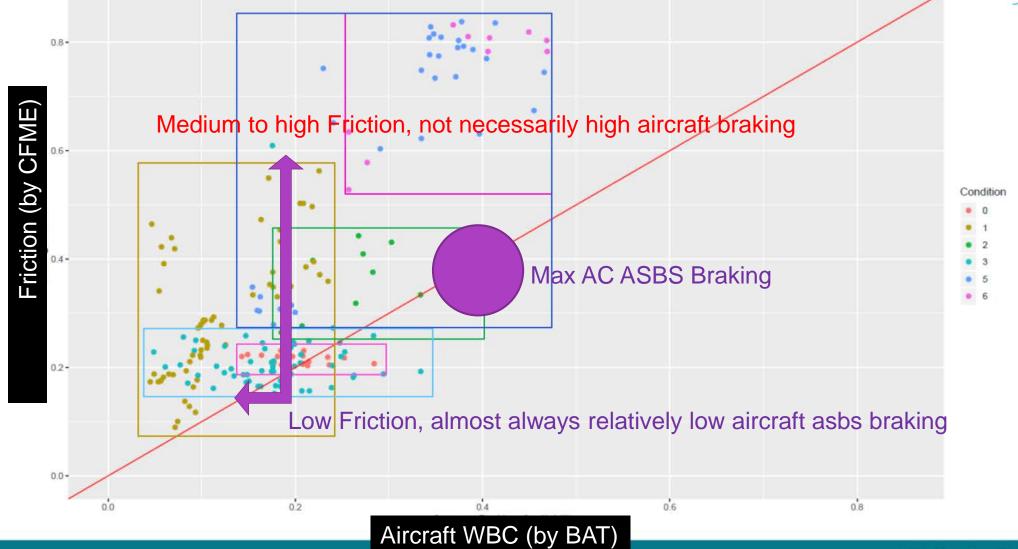
Measures in-situ contaminated runway maximum aircraft asbs braking availability (stopping and steering 'slipperiness') the full length of the runway Emerging Technologies - Decision Supporting Tools An aircraft anti-skid braking system and landing gear mounted into a ground vehicle.



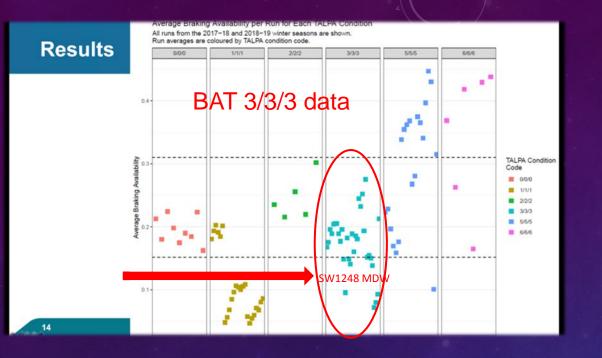


Instead of runway friction, the BAT measures actual aircraft WBC availability – i.e. how long it will take an aircraft to stop using anti-skid wheel braking

#### Anti-skid braking system

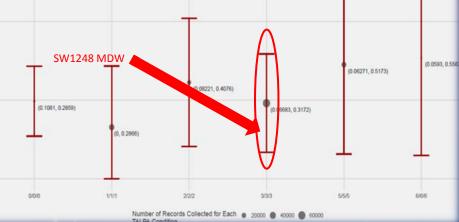

Landing Gear

Ground vehicle with GRF RCR system




## **Results: Comparison between BAT and CFME**

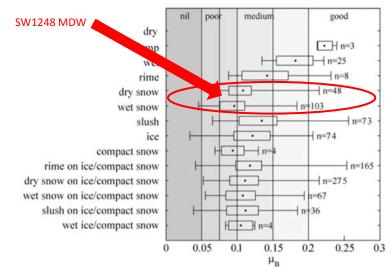
Relationship between Average CFME and Average BAT

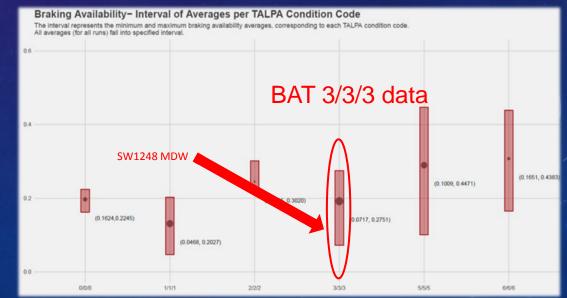



NCCNC



AI least 75% of data collected for a TALPA condition fails into specified intervals. BAT 3/3/3 data


Braking Availability Values- Interval Ranges




#### Results

### Actual aircraft 3/3/3 data

Type of contamination





average .08

Braking availability also helps determine 'steering' ability.



Integration of DSTs with in-RCR-vehicle, or cloud based NOTAM mgmt systems

Integrating/using the information from the above objectively measuring DST sensors to inform our FICONs (manual or auto population of FICON fields) will provide straightforward and easily understood, safest downgrading criteria to provide most accurate and safe, objectively measured RWYCCs and SSD calculations

Example: MDW SW1248 12/05, today a 3/3/3, implied WBC .16, 'Medium', actual 12/05 average WBC .085, 'Poor'

# Emerging Technologies - Decision Supporting Tools Global Airport GRF implementation assistance/tools

Suggeste

FAA TALF

WBC (Mu

reconcile

implied \

Braking

Reports.

### Suggested draft TC GRF FICON

Using measured MU<sub>ac</sub> (WBC) to support or downgrade RWYCC (from inaircraft, in-ground vehicle, or ADS-B ML and AI)

| Runway Conditi                                                                                                                                                                                                               | on As | se | ss           | m                                                                      | en            | tΝ             | /latrix (RCAM)                                                                                                                                 |                         |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|--------------|------------------------------------------------------------------------|---------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|
| Assessment Criteria                                                                                                                                                                                                          |       |    |              | Downgrade Assessment Criteria<br>(Control/Braking Assessment Criteria) |               |                |                                                                                                                                                |                         |  |  |  |  |
| Runway Condition Description                                                                                                                                                                                                 | RWYCC |    | WBC<br>Mu    | :                                                                      | CRFI<br>Range |                | Vehicle Deceleration Or<br>Directional Control<br>Observation                                                                                  | Pilot Braking<br>Action |  |  |  |  |
| • DRY                                                                                                                                                                                                                        | 6     |    | >.40         |                                                                        |               |                |                                                                                                                                                |                         |  |  |  |  |
| FROST     WET (The runway surface is covered by any<br>visible dampness or water up to and including<br>1/8 inch (3mm) depth)<br>Up to and including 1/8 inch (3mm) depth:<br>5 LUSH     SLUSH     WET SNOW                  | 5     |    | .21 to .40   |                                                                        |               | 0.40 or Higher | Braking deceleration is<br>normal for the wheel braking<br>applied AND directional<br>control is normal                                        | GOOD                    |  |  |  |  |
| -15°C and Colder outside air temperature:<br>• COMPACTED SNOW                                                                                                                                                                | 4     |    |              |                                                                        | 0.39 to 0.35  | _              | Braking deceleration OR<br>directional control is between<br>Good and Medium                                                                   | GOOD TO<br>MEDIUM       |  |  |  |  |
| SLIPPERY (WHEN) WET (wet runway)     ORY SNOW or WET SNOW (Any depth) ON TOP OF COMPACTED SNOW Greater than 1/8 inch (3mm) depth of:     ORY SNOW     WET SNOW Warmer than -15*C outside air temperature:     COMPACTED SNOW | 3     |    | .11 to .20   |                                                                        |               | 0.34 to 0.30   | Braking deceleration is<br>noticeably reduced for the<br>wheel braking effort applied<br>OR directional control is<br>noticeably reduced       | MEDIUM                  |  |  |  |  |
| Greater than 1/8 inch (3mm) depth of:<br>• STANDING WATER<br>• SLUSH                                                                                                                                                         | 2     |    | .05          |                                                                        | 9 to 0.20     |                | directional control is between<br>Medium and Poor                                                                                              | MEDIUM TO<br>POOR       |  |  |  |  |
| • ICE                                                                                                                                                                                                                        | 1     |    | )5 to .10    |                                                                        |               | 0.19 or Lowe   | Braking deceleration is<br>significantly reduced for the<br>wheel braking effort applied<br>OR directional control is<br>significantly reduced | POOR                    |  |  |  |  |
| WET ICE     SLUSH ON TOP OF ICE     WATER ON TOP OF COMPACTED SNOW     DRY SNOW or WET SNOW ON TOP OF ICE                                                                                                                    | 0     |    | <u>20. 5</u> |                                                                        |               | Ř              | Braking deceleration is<br>minimal to non-existent for<br>the wheel braking effort<br>applied OR directional control<br>is uncertain           | LESS THAN<br>POOR / NIL |  |  |  |  |

#### lotes (1-4):

1) Refer to Section 6.5 - CRFI Information Presented in the RCAM, for an explanation of the relationship between CRFI and RWYCCs.

2) WBC values correlate with Pilot Braking Action Reports airplane braking coefficient

3) CAUTION: At temperatures near and above freezing (e.g., at -3\*C and warmer), the runway surface condition may be more slippery than indicated by the RWYCC assigned by the RCAM assessment criteria. At these temperatures, airport and aerodrome operators should exercise vigilance and should downgrade the runway condition code if appropriate.

4) CAUTION: Heavy frost that has noticeable depth may have friction qualities similar to ice and downgrading the runway condition code accordingly should be considered. If driving a vehicle over the frost does not result in tire tracks down to bare pavement, the frost should be considered to have sufficient depth to consider a downgrade of the runway condition code.

|                                    | Runway Condition Assessment Matrix (RCAM)                                                                                                                   |                               |               |             |              |                                                                                                                                                 |                                        |  |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|
|                                    | Assessment Criteria                                                                                                                                         | Downgrade Assessment Criteria |               |             |              |                                                                                                                                                 |                                        |  |  |  |
| ed draft<br>PA FICON               | Runway Condition Description                                                                                                                                | Code                          | WBC<br>Mu     | Mu<br>(μ)   |              | Deceleration Or Directional<br>Control Observation                                                                                              | Pilot<br>Reported<br>Braking<br>Action |  |  |  |
|                                    | • Dry                                                                                                                                                       | 6                             |               |             |              |                                                                                                                                                 |                                        |  |  |  |
|                                    | Frost     Wet (Includes Damp and 1/8" depth or less of<br>water)     1/8" (3mm) depth or less of:     Slush     Dry Snow     Wet Snow                       | 5                             | .40 or Higher |             | 40 or Higher | Braking deceleration is<br>normal for the wheel braking<br>effort applied AND directional<br>control is normal.                                 | Good                                   |  |  |  |
|                                    | 5° F (-15°C) and Colder outside air temperature:<br>• Compacted Snow                                                                                        | 4                             | < .40 to .20  | 39          |              | Braking deceleration OR<br>directional control is between<br>Good and Medium.                                                                   | Good to<br>Medium                      |  |  |  |
|                                    | Slippery When Wet (wet runway)                                                                                                                              |                               |               |             |              |                                                                                                                                                 |                                        |  |  |  |
| IPC                                | Dry Snow or Wet Snow (Any denth) over                                                                                                                       |                               |               |             |              |                                                                                                                                                 |                                        |  |  |  |
| VBC<br>Mu                          | Compacted Snow<br>Greater than 1/8" (3mm) depth of:<br>• Dry Snow<br>• Wet Snow<br>Warmer than 5" F (-15"C) outside air<br>temperature:<br>• Compacted Snow | 3                             | < .20 to .10  | 30          | 29           | Braking deceleration is<br>noticeably reduced for the<br>wheel braking effort applied<br>OR directional control is<br>noticeably reduced.       | Medium                                 |  |  |  |
|                                    | Greater than 1/8" (3mm) depth of:<br>• Water<br>• Slush                                                                                                     | 2                             |               |             | to           | Braking deceleration OR<br>directional control is between<br>Medium and Poor.                                                                   | Medium to<br>Poor                      |  |  |  |
| u <sub>ac</sub> ) values<br>e with | • Ice                                                                                                                                                       | 1                             | < .10 to .05  |             | 21           | Braking deceleration is<br>significantly reduced for the<br>wheel braking effort applied<br>OR directional control is<br>significantly reduced. | Poor                                   |  |  |  |
| NBCs of<br>Action                  | Wet Ice     Slush over Ice     Water on top of Compacted Snow     Dry Snow or Wet Snow over Ice                                                             | 0                             | <.05          | 20 or Lower |              | Braking deceleration is<br>minimal to non-existent for<br>the wheel braking effort<br>applied OR directional control<br>is uncertain.           | Nil                                    |  |  |  |

Emerging Technologies - Decision Supporting Tools Near future (w/i 3 years) Real Time Augmented and Mixed Reality

RTAMR for RCRg teams – all augmenting information provided to Operator (and other stakeholders, i.e. remote ATC) – 'does the augmenting information agree with what the operator feels he/she is observing?' Comprehensive situational awareness and safe navigation in low visibility conditions Emerging Technologies - Decision Supporting Tools Global GRF implementation training tools FAA and some organizations have already created TALPA CBT programs

> Transports Transport Canada Canada

Governments in Canada (and likely others) are collaborating with Aerospace Co's, SMEs at Airports, and Universities to create GRF familiarization and RCR training centers of excellence.

Greater Grand

**Laurentian**University



# Thank You, Safe Travels! ©