Getting to Zero Net Energy

Erin Cooke Sustainability + Environmental Policy Director

Achieve zero by 2021

Zero Net Energy

Zero Waste to Landfill

Healthy Buildings Happy People

Zero Carbon

Water Balanced

Green Data Science

Transit First

Resilient Natural Systems & Wildlife

Eco-Eats & Shops

The flight path to a net zero campus

Balancing the energy load to zero

Start small

- 8,155 gsf
- \$6 million
- Net Zero Design

and study

- High performance envelope
- Cool roof materials
- Maximize daylight
- Dynamic glazing
- High efficiency HVAC system
- Optimize performance (BMS)
- Generate on-site energy
- Measure & verify design assumptions

Design Challenges

Unique Characteristics

- Functions
 - Airside/landside security
 - •First responders
 - Operations Center
 - VIP reception
 - Training center
- 24hr schedule (3 shifts)
- •Air quality concerns

High Performance Features

- Daylighting / Solar Tubes / Perimeter Glazing
- Advanced Lighting and Controls
- Variable Refrigerant Flow (VRF) Heating and Cooling System
- LEED Gold
- Photovoltaic Array
- Zero Net Energy

Modeled vs Actual Energy

88,916 kWh Modeled Consumption

183,163 kWh Actual Consumption (2015)

2.06 X Greater Consumption Than Modeled

Why is actual performance different than expected?

Energy Consumption System

San Francisco

International Airport

SFO

Occupancy vs Energy Use

San Francisco

International

Airport

SFO

ZNE Verification - Sensors

Plug Load

Occupancy

Plug Load

Utilization Analysis

Occupancy Of AOF Rooms By Time Of Day As Measured By Occupancy Sensors

Time of Day

Program lighting and HVAC schedules to better reflect actual use patterns in order to optimize energy consumption.

Plug Load Assessment

Lessons Learned

Energy Modeling

Energy Disaggregation and Management

Occupant Engagement and Training

