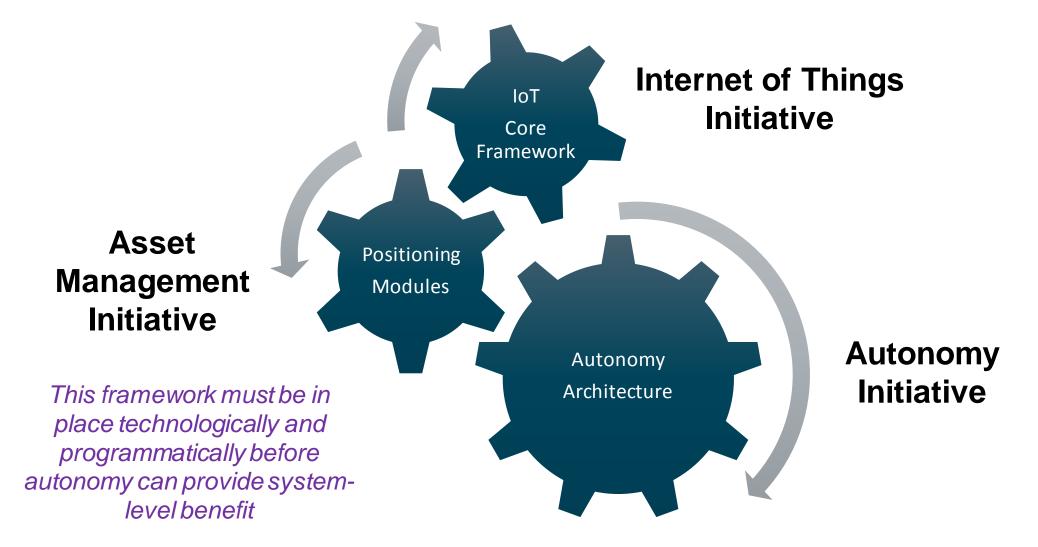
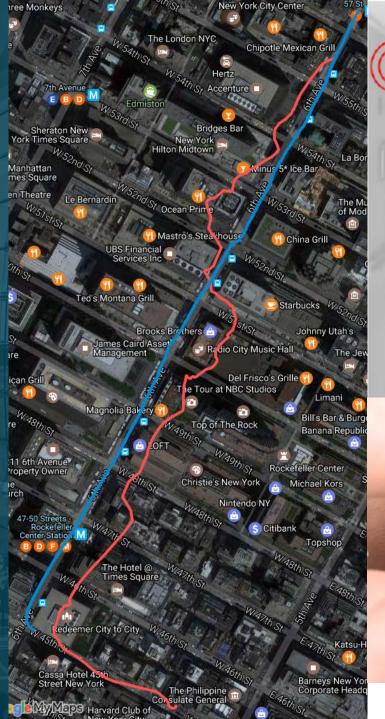

Autonomous Vehicles

Autonomous Vehicles (AV)


Connected Vehicles (CV)

Ultra-Wideband (UWB)


Where Are We Going with Automated Vehicles?

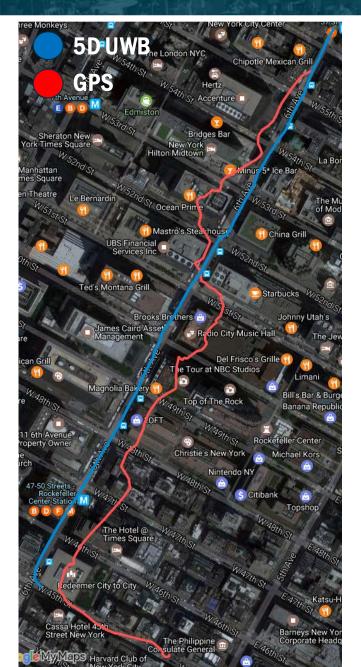
- Near term (<2 years)
 - Advanced Driver Assistance System (ADAS) ACC, EBS, LKAS
 - Low-speed, autonomous fixed route shuttles
 - High-speed, semi-dedicated connected facilities
 - Shorter Headway Automated People Movers
- Mid term (2-5 years)
 - Automated GSEs
 - Low speed, first/last mile on-demand shuttles
 - Automated vehicle guideways replacing rail APMs at airports
- Long term (5+ years)
 - Automated mobility on-demand
 - Automated parking garages

Underlying Architecture

High-Accuracy Real-time Asset Tracking and Management

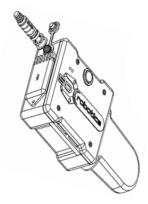
Peer to Peer Positioning is the Key...

Reliability: Bound error


Resiliency: Recover quickly

Better Safety: See around corners

Fault-tolerant: Swarm coordination


- GPS is not enough
 - Does not work indoors
 - Can be jammed
 - Accuracy not sufficient for automation
 - Requires radio/cellular communication to convey location data centrally
 - When multiplied by 10,000 to 35,000 units causes interference issues with other narrowband communications
- Beacons Work with cellular, but very low position accuracy and shorter ranges
- Ultra-wideband found to be best for accuracy, no interference, jam proof

Asset Management

DOT accuracy requirement:	1.5m
DOT accuracy objective:	10cm

	GPS	5D UWB
Average	~10m	~5cm
Worst Case	~50m	~0.5m

- Reduced downtime, higher efficiency and assured safety result from a combination of contributing factors including:
 - Reduced idle time
 - Minimized fuel cost
 - Lower repair costs
 - Maximized productivity
 - Optimized GSE fleet size
 - Extended equipment life
 - Verified worker access
 - Enforced safety standards
 - Avoided equipment damage

-After deploying a Vehicle Management System:

- An airline uncovered that out of 100 pieces of GSE (baggage tractors) monitored in their hub, less than 35 were ever used simultaneously at any given time over a four-month period. As a result, the airline canceled the purchase of new equipment and transferred the underutilized equipment to a new hub.
- Ramp accidents were reduced by nearly 75%
- GSE operator overtime was significantly reduced
- Preventative Maintenance costs reduced by 50%
- 30% reduction in GSE fleet size

Autonomous GSEs

Automated Ground Support Equipment

CargoPod at Heathrow Airport

Mercedes Daimler AG Automated Snow Plows at Pferdsfeld airbase

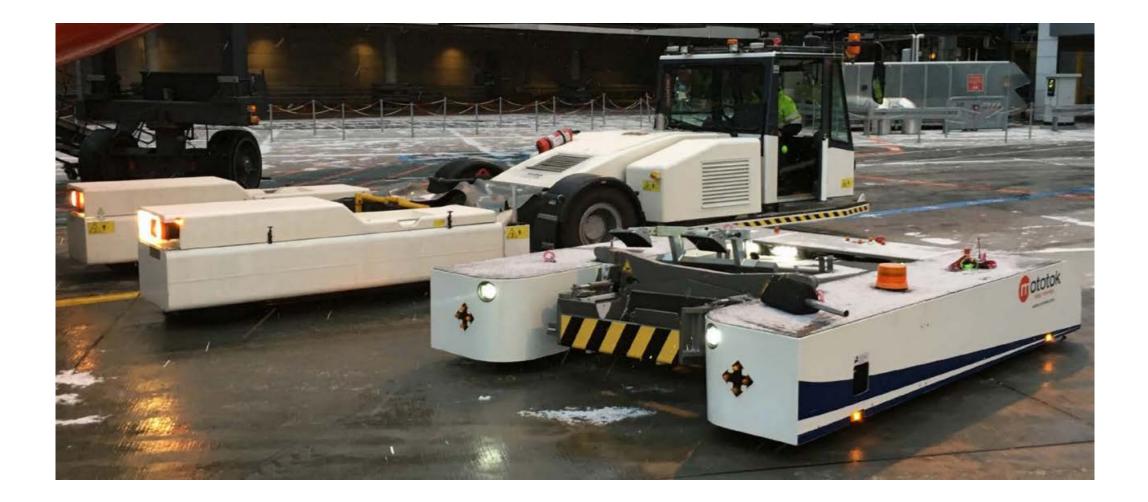
Improving automated baggage

Rotterdam The Hague Airport (RTHA) and Vanderlande

"An Uber-like service" on the

Gatwick Airport (London)

Collaboration in Hong Kong


Hong Kong International Airport

- Airport luggage
- Movement of Universal Load Devices
- AutoPallet
- GeoDrone

Electric fly-by-wire Pushback

- Reduce human error
 - Safety consideration
 - Reduce damage/reporting damage
- Security concerns
 - Less people/less threats
- Many connections are standardized
- Operator requirements becoming more stringent

Chatamplementing airside automation demonstration by Nov 2019

- Automate turnaround functions
- Automate push back (and possibly taxi)
- Independent on-demand transport of ULDs and pallets
- Autonomous delivery of containers on "milk runs" and to staging areas
- Autonomous transport for passenger transport
- Autonomous on demand transport for staff

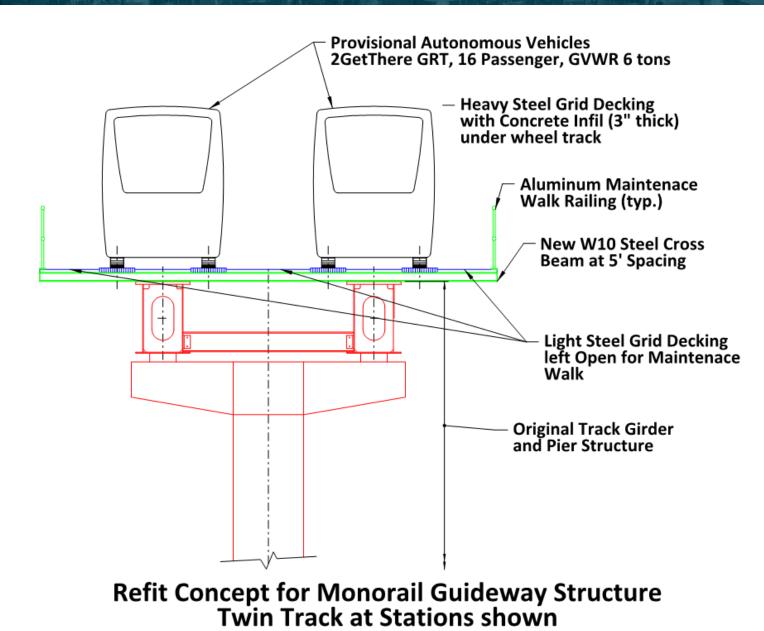
Autonomous Passenger Transport

AV Shuttle Vendors

Mercedes Bus (2021)	
Ohmio Lift XT1 (2020)	
Toyota e-Palette (2021)	te Palette
2GetThere GRT2 - 3rd Gen (2 door)	
2GetThere GRT2 - 3rd Gen (1 door)	
EasyMile EZ10 Gen 3 (2020)	

Ohmio Lift	
Coast Automation	
2GetThere GRT	
EasyMile EZ10	
Navya/Softbank	
City Mobil2	

Improve Air Train Operation and Capacity



APM Replaced with Connected Automated Guideway

Repurposing Existing Infrastructure

Case Example – Monorail Replacement

Preliminary engineering

- Cost savings (\$200M vs. \$1.8B)
- Time savings
 (2 years vs. 10 years)
- Expansion potential
- Vehicle flexibility

	APM	CV/AV
Service Flexibility	Fixed Route and Schedule	On-Demand, Real-Time, Dynamic Schedule
Vehicle Fleet Flexibility	None	Mixed Vehicle Size
Vendor Options	Limited	Many
Tracks, Interlocking, Switches, Electrical Substations, Power	Required	Not Required
Longitudinal/Lateral Control	Tracks	Sensors and Algorithms
Aligned with Future Mobility Trends	No	Yes
Deployment Cost	High Infrastructure Cost	Minimal Infrastructure Cost
O&M Costs (Power Savings!)	High	Low
Construction Duration	High	Low
Deployments to Date	Multiple Deployments in US and Around the World	Mostly Short- and Long-Term Trials in US and Around the World

Robert James

rojames@hntb.com

(732) 689-1989