Session 2.5

Advanced Energy Management: You've Installed LEDs & Solar Panels—Now What?

September 30, 2018

NASHVILLE 2018

BNA18 ACI-NA ANNUAL CONFERENCE & EXHIBITION SEPTEMBER 30 - OCTOBER 2, 2018

Our Panelists

- → Douglas Nordham, Associate Principal-Energy Consulting, ARUP
- → Cullen Choi, Energy Manger, Denver International Airport
- → Roy Palk, President/CEO, New Horizons Consulting
- → Chad Reese, Environmental Affairs Manager, San Diego County Regional Airport Authority

Defining Advanced Energy Management

Douglas Nordham ARUP

What is "Advanced" Energy Management?

- → "Old School" Energy Management
- → Basic Concepts:
 - Reduce/Conserve
 - Increased Efficiency
 - Focus on energy (kWh)
 - Lower Annual Cost

What is "Advanced" Energy Management?

Advanced Energy Management (AEM) utilizes available technology, business models, financing options, and multiple value streams to provide synergies and achieve the Stakeholder's stated objectives.

Technology

- Renewables, CHP
- Batteries
- Thermal Storage
- Digital, IOT
- Utility/Grid Interactions

Business Models

- Energy Services (ESCO)
- Power Purchase (PPA)
- Public Private Partnerships (P3)

Operational Benefits

- Reliability
- Resiliency
- Low-Carbon
- Low-Cost

& Technica **Operations** Affai

AEM Example: Airport Microgrids

With lots of competing opportunities, challenges and perspectives:

How do we select the most appropriate features and criteria for the Microgrid?

Solution: Use Case Analysis

- → Determine the general expectations (Owners Project Requirements) of the Airport Microgrid system as determined through the Microgrid Owners/Users survey process and meeting(s), including:
 - Define the functional Use Case requirements of the Airport Microgrid, including any required operational limits and constraints
 - Define the non-functional Use Case requirements and attributes of the Airport Microgrid, such as desired economics and risk tolerance.
 - Define the desired Use Case transactional features, including advanced metering, dashboards, financial optimization, and operational performance information that needs to be provided/available to the Airport Microgrid operators, users, and utility.

Advanced Energy Management at DEN

Cullen Choi
Denver International Airport

Characterization of DEN

Characterization of DEN

& Technical s Workshop Affair **Operations**

Characterization of DEN

210+ million kWh annually

5+ million therms annually

& Technical s Workshop **Operations**

Characterization of DEN

2017 cost: \$24.5 million

Evolution of Energy Management

Evolution of Energy Management

→ Energy Master Plan

BNA18 ACI-NA ANNUAL CONFERENCE & EXHIBITION SEPTEMBER 30 - OCTOBER 2, 2018

Evolution of Energy Management

& Technica **Operations** Affai

Benchmarking & Analytics

Affair **Operations**

BNA18 ACI-NA ANNUAL CONFERENCE & EXHIBITION SEPTEMBER 30 - OCTOBER 2, 2018

Benchmarking & Analytics

Affair Operations

Benchmarking & Analytics

Operations & Technical Affairs Workshop

Reliability & Resiliency

reliability

MISSION 5%

GENERATING 95%

OCCUPIED 98%

& Technical s Workshop Operations Affair

Reliability & Resiliency

resiliency

SINGLE

SOURCE

2+ SOURCES

LIGHTING 100S

CONTROL TOWERS

PASSENGER MOVEMENT

HVAC

COMMUNICATIONS...

& Technical s Workshop **Operations**

BNA18

ACI-NA ANNUAL CONFERENCE &

Unaffordable Efficiency

Top 20 Most Expensive Cost Centers: Rolling Year	ů 🖍
BCON Concourse B	\$3,329,009
TBLG Terminal Building	\$3,092,860
CPLT Central Plant	\$1,819,618
CCON Concourse C	\$1,417,281
ACON Concourse A	\$1,298,748
PKPB Public Parking	\$859,793
AGTS Automated Guided Train Sy	stem \$778,872
ROAD Access and Terminal Roads	s \$596,586
AFLD Airfield	\$523,091
FIRE Fire Fighting	\$199,049
CGJU Joint Use Cargo Building	\$184,551
TRCR Transit Center	\$174,940
AABD Administration Building	\$171,353
MNCT Maintenance Center	\$162,278
PKES Employee Parking South	\$101,466
CGFE Fed-ex Building	\$92,127
SCMP South Campus Airport Adn	nin \$74,926
ZUTS Sewer	\$67,171
SNOW Snow Removal	\$66,782
MNVS Maintenance Vehicle Stora	ige \$66,117

	Electricity Blended Rate by Cos Center: Rolling Year	t f	Ì	1
	ROAD Access and Terminal Roads	\$0.35	66/k	Wh
	UTWW Wastewater	\$0.19	97/k	Wh
	DICE De-Icing System	\$0.13	37/k	Wh
	AFLD Airfield	\$0.12	28/k	Wh
	SCMP South Campus Airport Admir	\$0.1	123,	/kWl
	UTWA Water Distribution	\$0.11	7/k	Wh
	ZUTS Sewer	\$0.11	6/k	Wh
	CVFC Commercial Vehicle Facility	\$0.10)8/k	Wh
	UTCM Communication and Controls	\$0.1	106,	/kWl
	MNFS Maintenance Airport Fueling	\$0.10	05/1	κWh
	ZART Terminal Art	\$0.10)4/k	Wh
	TSA K9 Unit B	\$0.10)3/k	Wh
	FIRE Fire Fighting	\$0.10)3/k	Wh
ä	ZARP Temp QA Lab	\$0.09	9/k	Wh
2	CPLT Central Plant	\$0.09	9/k	Wh
	MIND WorldPort	\$0.09	8/k	Wh
\equiv	PKET Employee Parking Terminal	\$0.09	5/k	Wh
2	POLC DPD K9 Unit A	\$0.09	92/k	Wh
2	ZUTE Electricity	\$0.09	2/k	Wh
2	CGJU Joint Use Cargo Building	\$0.09	92/k	Wh
4	CGAB Airborne Building	\$0.09)1/k	Wh
	CVHL Commercial Vehicle holdlot	\$0.09	91/k	Wh
	PKES Employee Parking South	\$0.09	0/k	Wh
8	CGCB Combination Building	\$0.08	88/k	Wh
Z	CVBD Commercial Vehicle Building	\$0.08	36/	κWh
8	SNOW Snow Removal	\$0.08	85/k	Wh
	PKPB Public Parking	\$0.08	80/k	Wh
V	CGFE Fed-ex Building	\$0.08	89/k	Wh
	BCON Concourse B	\$0.07	79/k	Wh
8	MNVS Maintenance Vehicle Storage	\$0.0)75,	/kWl
8	RCGR Rental Car Area	\$0.07	73/k	Wh
4	TRCR Transit Center	\$0.07	72/k	Wh
	CCON Concourse C	\$0.07	72/k	Wh
8	AGTS Automated Guided Train Syst	\$0.0	69/	kWh
-	ANTF Antenna Farm	\$0.06	9/k	Wh
7	MNCT Maintenance Center	\$0.06	9/k	Wh
$^{\sim}$	TBLG Terminal Building	\$0.06	8/k	Wh
	ACON Concourse A	\$0.06	64/k	Wh
	AABD Administration Building	\$0.05	9/k	Wh

Advanc(ing) Energy Management

cost + savings

Advanc(ing) Energy Management

cost + savings + use

integration + planning

reliability + resiliency

Advanced Energy Management and Sustainability

Chad Reese
San Diego County Regional Airport Authority

SAN's Definition of Sustainability

"Plan and build an enduring and resilient customer-focused enterprise by effectively managing our financial; social; and environmental risks, obligations and opportunities."

Sustainability Management Planning

Main Topic Areas

Sustainable Energy

Implementing

Water Stewardship

Implementing

Clean Transportation

Developing

Air Quality & Emissions

Developing

Zero Waste

FY2019

Climate Resilience

FY2019

Biodiversity

FY2020

& Technica Affair **Operations**

CONTENTS

EX!	ecutive Summary	1
	Introduction	1
	An Integrated Approach to Energy Resiliency	1
	Steps to Achieving a Robust Energy Resiliency Program	2
Inti	roduction	3
	Creating the Resilient Airport	3
Inte	egration with Airport Initiatives	6
	Integration with Ongoing Airport Initiatives	6
	Existing Energy Infrastructure	8
	Airport Energy Use	10
	Airport Strategic Energy Planning Methodology	11
Air	port Vision for Energy Leadership	11
	Focused Energy Goals	12
	Stakeholder Engagement	12
1	CONSERVATION AND EFFICIENCY	14
	Overview	16
	Critical Areas of Focus	17
	Impact and Implementation	24
2.	CARBON NEUTRALITY	26
	Overview	28
	Critical Areas of Focus	29
	Impact and Implementation	32
3.	INTERDEPENDENCE AND RESILIENCY	34
	Overview	36
	Critical Areas of Focus	37
	Impact and Implementation	40
4.	COST CONTAINMENT	42
	Overview	44
	Critical Areas of Focus	45
	Impact and Implementation	49
5.	REGIONAL AND INDUSTRY LEADERSHIP	50
	Overview	52
	Critical Areas of Focus	53
	Impact and Implementation	56
IMI	PLEMENTATION ROADMAP	58
	Status Quo	60
	Integrated Strategy	62
	Energy Projects—What / When / How	63
	Integrated Roadmap	64
	Integration With Airport Development Plan	69
	Immediate Actions	70

SAN DIEGO INTERNATIONAL AIRPORT STRATEGIC ENERGY PLAN

Dimensions

Integrated & Phased Solutions

Updated Phased Energy Projects

	Energy Project	Capacity	Year	Funding Mechanism	Energy Efficiency	Carbon S Neutrality	I Alignr	Containment	Leadership
	Battery Storage (ongoing)	4 MWh	2018	Shared savings / Other		•	•	•	•
	Upgrade Central Plant	+ 900 tons	2022	T1RP Funding			•	•	
	Photovoltaic Solar	2 MW	2023	PPA / CIP		•	•	•	•
	Battery Storage	4 MWh	2023	PPA / Other		•	•	•	•
>	Photovoltaic Solar	2 MW	2026	PPA / CIP		•	•	•	•
Â	Energy efficiency (identified from au		Every 5 years	On-bill financing / CIP		•	•	•	•

SUSTAINABLE ENERGY

DRAFT

Quarterly Implementation Update (March - May 2018)

The Airport's Strategic Energy Plan (STEP) provides a roadmap for the Authority to establish cleaner, more dependable, and cost-effective energy sources. Implementation updates in the STEP's five primary strategy areas are provided below:

1. Conservation & Efficiency

- · 38% of storefronts are certified Green Concessions
- . Updating Rules and Regulations
- · Pursuing energy storage, retro-commissioning, & lighting capital projects

3. Interdependence & Resiliency

- Installed 5.5 MW of Solar PV onsite to date.
- · Designing new, larger capacity generator for Central Utility Plant (CUP) Developing SMP Air Quality & Clean Transportation
- Plans (FY 2018/19)

2. Carbon Neutrality

- · Calculating energy savings from VALE Pre-Conditioned Air (PCA) and 400 hz jet bridge meters
- · Piloting renewable diesel in Authority vehicles (lower carbon intensity)

4. Cost Containment

- · Generated 3,249,565 kWh of solar CY18 to date Saved \$50,000 in Ecochoice program in April
- Implementing retro-commissioning project
- · 4 MWh Battery Energy Storage Project in contract
- Revisiting AIMMS support contract

5. Regional & Industry Leadership

- . Provided SAN tours to City of Chula Vista, Port of Portland (PDX), Ontario Airport Authority (OIAA), International Facilities Management Association (IFMA)
- Participated with other airports in Sustainability Management Association webinar

	Strategy Areas				
Look Ahead Activities	1	2	3	4	5
Update Design Guidelines to incorporate the STEP		√	\checkmark		
Improve AIMMS to develop energy metering program	✓			✓	
Host additional energy-focused "Lunch & Learns"					\checkmark
ADP Programmatic Document integrating STEP throughout the document, with stand-alone Sustainability chapter		✓		✓	

Thank You!

Utility Provider Perspectives

Roy M. Palk New Horizons Consulting

Traditional Power Planning Models Are Evolving

- → Historically, has been utility initiated via I.R.P.
- → Delivery from central station supply model
- → Tariffs were almost totally energy recovery
- → Very little attention to demand/capacity side
- → Changing model sometimes creates panic

Disruptive Doesn't Have to be Destructive

- → Distribution connected generation
- → Various technologies
- → May or may not be owned by the utility
- → PPAs becoming more commonly used
- → Smart utilities partnering with their customer

Changes in the Energy Planning are Also Affecting the Capital and **Financing Industry**

- → Historically, debt amortization and PPA were co-terminus, exact 1-1 match, allrequirements contract between utility and customer
- → Today's model becoming less allrequirements, generation may be distributed, may be connected to the distribution grid

For Utilities - How to be a Passenger on the Train Rather Than in Front of It

- → Engage with customers, don't resist changes
- → Look for win-win scenarios
- Seek ways to share customer-owned resources
- → Study behind-the-meter utility-owned options
- → Don't make market changes a contest of wills, realize the customer will eventually win
- → Consider off-balance sheet approaches

For Customers— You, the Airport Operators

- → Seek to understand the utility's concerns
- → Open mindedness and look for partnerships
- > View distribution connected or on-site generation as a mutual resource (peak diversity, use of PPAs)
- → Compare off-balance sheet financing with bonds plus other advantages of a third-party partner

Thank you!

Roy M. Palk
New Horizons Consulting
roympalkesq@gmail.com
859-771-1900

